Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 7431, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548871

ABSTRACT

Effective management and control of parasitic infections on farms depends on their early detection. Traditional serological diagnostic methods for Fasciola hepatica infection in livestock are specific and sensitive, but currently the earliest detection of the parasite only occurs at approximately three weeks post-infection. At this timepoint, parasites have already entered the liver and caused the tissue damage and immunopathology that results in reduced body weight and loss in productivity. Here, we investigated whether the differential abundance of micro(mi)miRNAs in sera of F. hepatica-infected sheep has potential as a tool for the early diagnosis of infection. Using miRNA sequencing analysis, we discovered specific profiles of sheep miRNAs at both the pre-hepatic and hepatic infection phases in comparison to non-infected sheep. In addition, six F. hepatica-derived miRNAs were specifically identified in sera from infected sheep. Thus, a panel of differentially expressed miRNAs comprising four sheep (miR-3231-3p; miR133-5p; 3957-5p; 1197-3p) and two parasite miRNAs (miR-124-3p; miR-Novel-11-5p) were selected as potential biomarkers. The expression of these candidates in sera samples from longitudinal sheep infection studies collected between 7 days and 23 weeks was quantified using RT-qPCR and compared to samples from age-matched non-infected sheep. We identified oar-miR-133-5p and oar-miR-3957-5p as promising biomarkers of fasciolosis, detecting infection as early as 7 days. The differential expression of the other selected miRNAs was not sufficient to diagnose infection; however, our analysis found that the most abundant forms of fhe-miR-124-3p in sera were sequence variants (IsomiRs) of the canonical miRNA, highlighting the critical importance of primer design for accurate diagnostic RT-qPCR. Accordingly, this investigative study suggests that certain miRNAs are biomarkers of F. hepatica infection and validates miRNA-based diagnostics for the detection of fasciolosis in sheep.


Subject(s)
Circulating MicroRNA , Fascioliasis , MicroRNAs , Animals , Sheep/genetics , MicroRNAs/genetics , Fascioliasis/diagnosis , Fascioliasis/genetics , Fascioliasis/veterinary , Biomarkers
2.
Mol Cell Proteomics ; 22(12): 100684, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993102

ABSTRACT

Fasciola hepatica is a global helminth parasite of humans and their livestock. The invasive stage of the parasite, the newly excysted juvenile (NEJs), relies on glycosylated excreted-secreted (ES) products and surface/somatic molecules to interact with host cells and tissues and to evade the host's immune responses, such as disarming complement and shedding bound antibody. While -omics technologies have generated extensive databases of NEJs' proteins and their expression, detailed knowledge of the glycosylation of proteins is still lacking. Here, we employed glycan, glycopeptide, and proteomic analyses to determine the glycan profile of proteins within the NEJs' somatic (Som) and ES extracts. These analyses characterized 123 NEJ glycoproteins, 71 of which are secreted proteins, and allowed us to map 356 glycopeptides and their associated 1690 N-glycan and 37 O-glycan forms to their respective proteins. We discovered abundant micro-heterogeneity in the glycosylation of individual glycosites and between different sites of multi-glycosylated proteins. The global heterogeneity across NEJs' glycoproteome was refined to 53 N-glycan and 16 O-glycan structures, ranging from highly truncated paucimannosidic structures to complex glycans carrying multiple phosphorylcholine (PC) residues, and included various unassigned structures due to unique linkages, particularly in pentosylated O-glycans. Such exclusive glycans decorate some well-known secreted molecules involved in host invasion, including cathepsin B and L peptidases, and a variety of membrane-bound glycoproteins, suggesting that they participate in host interactions. Our findings show that F. hepatica NEJs generate exceptional protein variability via glycosylation, suggesting that their molecular portfolio that communicates with the host is far more complex than previously anticipated by transcriptomic and proteomic analyses. This study opens many avenues to understand the glycan biology of F. hepatica throughout its life-stages, as well as other helminth parasites, and allows us to probe the glycosylation of individual NEJs proteins in the search for innovative diagnostics and vaccines against fascioliasis.


Subject(s)
Fasciola hepatica , Animals , Humans , Fasciola hepatica/physiology , Proteomics , Secretome , Glycoproteins/metabolism , Polysaccharides/metabolism , Membrane Glycoproteins/metabolism
3.
Vet Parasitol Reg Stud Reports ; 45: 100924, 2023 10.
Article in English | MEDLINE | ID: mdl-37783527

ABSTRACT

Fasciola hepatica is a parasitic helminth (worm) that poses a significant economic threat to the ruminant livestock industry worldwide. The disease, fasciolosis, can result in a range of clinical signs including anaemia, weight loss and death, with the most severe symptoms attributed to early acute infection when the parasite is migrating through the liver. Early diagnosis and intervention are essential for the control and management of the disease to prevent productivity losses. The traditional gold standard method of diagnosis uses faecal egg counts (FEC) that is limited to detecting patent infections from 10 to 12 weeks post infection (WPI). In contrast, serological assays can detect pre-patent infections as we have shown that enzyme-linked immunosorbent assays (ELISA) using the F. hepatica cysteine peptidase cathepsin L1 (FhCL1) can detect liver fluke infections from 3 to 4 WPI. Here, we used FEC and ELISA to monitor liver fluke infections in sentinel lambs from three commercial farms in Ireland from September 2021 to March 2022. All three farms showed a significant increase in FhCL1 antibody levels and FEC over this time, with a substantial rise in positive infection detection between late November and January. However, ELISA screening detected infection at least two months prior to FEC (September). This suggests that the regular screening of sentinel lambs for F. hepatica seroconversion in a "test and treat" approach could mitigate the negative damaging impact of early fasciolosis on flock health, welfare and productivity and inform management strategies. In addition, we show that whole blood samples taken on Whatman® protein saver cards could replace conventional serum blood tubes for blood collection. Cards can be stored at room temperature for long periods of time and samples revisited at any time for re-analysis. The adoption of these cards on farm together with the FhCL1 ELISA would provide a simpler, cost-effective, and eco-friendly method for testing sentinel lambs for liver fluke disease.


Subject(s)
Fasciola hepatica , Fascioliasis , Sheep , Animals , Farms , Fascioliasis/diagnosis , Fascioliasis/veterinary , Fascioliasis/parasitology , Cathepsins , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods
4.
Vet Parasitol ; 323: 110049, 2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37826973

ABSTRACT

Our laboratory's vaccine development strategy against the livestock parasite Fasciola hepatica centres around disrupting key biological processes by combining groups of antigens with similar/complementary functional actions into a single vaccine cocktail. In this study the focus was on antioxidant protein vaccines and a protease inhibitor vaccine aimed at disrupting the parasite's ability to defend against oxidative stress and protease-inhibitor balance, respectively. Two combinations of recombinantly expressed antioxidants were assessed, namely peroxiredoxin (rFhPrx), thioredoxin (rFhTrx) and thioredoxin-glutathione reductase (rFhTGR) (Group 1) and rFhPrx, rFhTrx, and two superoxide dismutases (rFhSOD1 and rFhSOD3) (Group 2). The protease inhibitor vaccine cocktail included representatives of each of the key secreted protease inhibitor families, namely a Kunitz-type inhibitor (rFhKT1), a serpin (rFhSrp1) and a stefin, (rFhStf1) (Group 3). The vaccine combinations were formulated in adjuvant Montanide 61VG administered at five timepoints; two before experimental challenge with 60 F. hepatica metacercariae and three after infection. The vaccine combinations did not reduce the liver fluke burden, and only Group 2 displayed a marginal reduction in egg viability (8.2%). Despite previous results showing an effect of liver fluke vaccines on overall weight gain in infected animals, no significant (P value >0.05) impact on weight gain was observed in this study. Antibodies were elicited against all the vaccine antigens within the cocktails and were maintained at high levels to the end of the trial, due to our strategy of continuing vaccine administration after infection. However, these responses were not boosted by the challenge F. hepatica infection. A comparative analysis with previous vaccine data using a protease inhibitor vaccine found no repeat of the promising outcomes associated with this vaccine, indicating that the addition of rFhSrp1 to the vaccine cocktail did not improve vaccine efficacy. Assessment of liver pathology across the two trials using a modified liver enzyme score (glutamate dehydrogenase to platelet ratio) at eight weeks post infection suggests an association with liver fluke burden above 45 flukes, which could be used to predict liver pathology in future trials. The results reported in this study highlight the ambiguousness in liver fluke vaccine development and the difficulty in obtaining consistent and repeatable protection. This work stresses the need for repetition of trials and the use of sufficiently sized groups to assess vaccine efficacy with adequate statistical power.

5.
PLoS Pathog ; 19(1): e1011081, 2023 01.
Article in English | MEDLINE | ID: mdl-36701396

ABSTRACT

Fasciola hepatica infection is responsible for substantial economic losses in livestock worldwide and poses a threat to human health in endemic areas. The mainstay of control in livestock and the only drug licenced for use in humans is triclabendazole (TCBZ). TCBZ resistance has been reported on every continent and threatens effective control of fasciolosis in many parts of the world. To date, understanding the genetic mechanisms underlying TCBZ resistance has been limited to studies of candidate genes, based on assumptions of their role in drug action. Taking an alternative approach, we combined a genetic cross with whole-genome sequencing to localise a ~3.2Mbp locus within the 1.2Gbp F. hepatica genome that confers TCBZ resistance. We validated this locus independently using bulk segregant analysis of F. hepatica populations and showed that it is the target of drug selection in the field. We genotyped individual parasites and tracked segregation and reassortment of SNPs to show that TCBZ resistance exhibits Mendelian inheritance and is conferred by a dominant allele. We defined gene content within this locus to pinpoint genes involved in membrane transport, (e.g. ATP-binding cassette family B, ABCB1), transmembrane signalling and signal transduction (e.g. GTP-Ras-adenylyl cyclase and EGF-like protein), DNA/RNA binding and transcriptional regulation (e.g. SANT/Myb-like DNA-binding domain protein) and drug storage and sequestration (e.g. fatty acid binding protein, FABP) as prime candidates for conferring TCBZ resistance. This study constitutes the first experimental cross and genome-wide approach for any heritable trait in F. hepatica and is key to understanding the evolution of drug resistance in Fasciola spp. to inform deployment of efficacious anthelmintic treatments in the field.


Subject(s)
Anthelmintics , Fasciola hepatica , Fascioliasis , Animals , Humans , Triclabendazole/metabolism , Triclabendazole/pharmacology , Triclabendazole/therapeutic use , Benzimidazoles/pharmacology , Anthelmintics/pharmacology , Fascioliasis/drug therapy , Fascioliasis/parasitology , Drug Resistance
6.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36290692

ABSTRACT

The antioxidant superoxide dismutase (SOD) catalyses the dismutation of superoxide, a dangerous oxygen free radical, into hydrogen peroxide and molecular oxygen. Superoxide generation during the oxidative burst of the innate immune system is considered a key component of the host defence against invading pathogens. We demonstrate the presence and differential expression of two SODs in Fasciola hepatica, a leaderless cytosolic (FhSOD1) and an extracellular (FhSOD3) form containing a secretory signal peptide, suggesting that the parasites exploit these enzymes in distinct ways to counteract reactive oxygen species (ROS) produced by cellular metabolism and immune defences. Both enzymes are highly expressed by the infective newly excysted juvenile (NEJ) stages and are found in abundance in their excretory-secretory products (ES), but only FhSOD1 is present in adult ES, suggesting that the antioxidants have different functions and pathways of secretion, and are under separate temporal expression control during the migration, growth, and development of the parasite. Functionally, the recombinant FhSOD1 and FhSOD3 exhibit similar activity against superoxide to their mammalian counterparts. Confocal immuno-localisation studies demonstrated the presence of FhSOD1 and FhSOD3 on the NEJ tegument and parenchyma, supporting our suggestion that these enzymes are secreted during host invasion to protect the parasites from the harmful oxidative bursts produced by the activated innate immune response. By producing superoxide enzymatically in vitro, we were able to demonstrate robust killing of F. hepatica NEJ within 24 h post-excystment, and that the lethal effect of ROS was nullified with the addition of SOD and catalase (the antioxidant enzyme responsible for the dismutation of hydrogen peroxide, a by-product of the SOD reaction). This study further elucidates the mechanism by which F. hepatica protects against ROS derived from cellular metabolism and how the parasite could mitigate damage caused by the host's immune response to benefit its survival.

7.
Trends Parasitol ; 38(12): 1068-1079, 2022 12.
Article in English | MEDLINE | ID: mdl-36270885

ABSTRACT

In the past decade significant advances in our understanding of liver fluke biology have been made through in-depth interrogation and analysis of evolving Fasciola hepatica and Fasciola gigantica omics datasets. This information is crucial for developing novel control strategies, particularly vaccines necessitated by the global spread of anthelmintic resistance. Distilling them down to a manageable number of testable vaccines requires combined rational, empirical, and collaborative approaches. Despite a lack of clear outstanding vaccine candidate(s), we must continue to identify salient parasite-host interacting molecules, likely in the secretory products, tegument, or extracellular vesicles, and perform robust trials especially in livestock, using present and emerging vaccinology technologies to discover that elusive liver fluke vaccine. Omics tools are bringing this prospect ever closer.


Subject(s)
Anthelmintics , Fasciola hepatica , Fasciola , Fascioliasis , Vaccines , Animals , Fascioliasis/prevention & control , Fasciola hepatica/genetics , Fasciola/genetics
8.
Genes (Basel) ; 13(10)2022 10 14.
Article in English | MEDLINE | ID: mdl-36292739

ABSTRACT

The helminth parasites, Fasciola hepatica and Fasciola gigantica, are the causative agents of fasciolosis, a global and economically important disease of people and their livestock. Proteases are pivotal to an array of biological processes related to parasitism (development, feeding, immune evasion, virulence) and therefore their action requires strict regulation by parasite anti-proteases (protease inhibitors). By interrogating the current publicly available Fasciola spp. large sequencing datasets, including several genome assemblies and life cycle stage-specific transcriptome and proteome datasets, we reveal the complex profile and structure of proteases and anti-proteases families operating at various stages of the parasite's life cycle. Moreover, we have discovered distinct profiles of peptidases and their cognate inhibitors expressed by the parasite stages in the intermediate snail host, reflecting the different environmental niches in which they move, develop and extract nutrients. Comparative genomics revealed a similar cohort of peptidase inhibitors in F. hepatica and F. gigantica but a surprisingly reduced number of cathepsin peptidases genes in the F. gigantica genome assemblies. Chromosomal location of the F. gigantica genes provides new insights into the evolution of these gene families, and critical data for the future analysis and interrogation of Fasciola spp. hybrids spreading throughout the Asian and African continents.


Subject(s)
Fasciola hepatica , Fasciola , Parasites , Animals , Fasciola/genetics , Fasciola hepatica/genetics , Peptide Hydrolases/genetics , Virulence , Proteome , Life Cycle Stages , Protease Inhibitors , Cathepsins
9.
BMC Genomics ; 23(1): 419, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35659245

ABSTRACT

BACKGROUND: MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression in organisms ranging from viruses to mammals. There is great relevance in understanding how miRNAs regulate genes involved in the growth, development, and maturation of the many parasitic worms (helminths) that together afflict more than 2 billion people. RESULTS: Here, we describe the miRNAs expressed by each of the predominant intra-mammalian development stages of Fasciola hepatica, a foodborne flatworm that infects a wide range of mammals worldwide, most importantly humans and their livestock. A total of 124 miRNAs were profiled, 72 of which had been previously reported and three of which were conserved miRNA sequences described here for the first time. The remaining 49 miRNAs were novel sequences of which, 31 were conserved with F. gigantica and the remaining 18 were specific to F. hepatica. The newly excysted juveniles express 22 unique miRNAs while the immature liver and mature bile duct stages each express 16 unique miRNAs. We discovered several sequence variant miRNAs (IsomiRs) as well as miRNA clusters that exhibit strict temporal expression paralleling parasite development. Target analysis revealed the close association between miRNA expression and stage-specific changes in the transcriptome; for example, we identified specific miRNAs that target parasite proteases known to be essential for intestinal wall penetration (cathepsin L3). Moreover, we demonstrate that miRNAs fine-tune the expression of genes involved in the metabolic pathways that allow the parasites to move from an aerobic external environment to the anerobic environment of the host. CONCLUSIONS: These results provide novel insight into the regulation of helminth parasite development and identifies new genes and miRNAs for therapeutic development to limit the virulence and pathogenesis caused by F. hepatica.


Subject(s)
Fasciola hepatica , MicroRNAs , Parasites , Animals , Fasciola hepatica/genetics , Host-Parasite Interactions/genetics , Humans , Mammals/genetics , MicroRNAs/genetics , Parasites/genetics , Transcriptome
10.
Epidemiol Infect ; 150: e128, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35723031

ABSTRACT

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) intracellular life-cycle, two large polyproteins, pp1a and pp1ab, are produced. Processing of these by viral cysteine proteases, the papain-like protease (PLpro) and the chymotrypsin-like 3C-like protease (3CL-pro) release non-structural proteins necessary for the establishment of the viral replication and transcription complex (RTC), crucial for viral replication. Hence, these proteases are considered prime targets against which anti-coronavirus disease 2019 (COVID-19) drugs could be developed. Here, we describe the expression of a highly soluble and functionally active recombinant 3CL-pro using Escherichia coli BL21 cells. We show that the enzyme functions in a dimeric form and exhibits an unexpected inhibitory profile because its activity is potently blocked by serine rather than cysteine protease inhibitors. In addition, we assessed the ability of our 3CL-pro to function as a carrier for the receptor binding domain (RBD) of the Spike protein. The co-expressed chimeric protein, 3CLpro-RBD, did not exhibit 3CL-pro activity, but its enhanced solubility made purification easier and improved RBD antigenicity when tested against serum from vaccinated individuals in ELISAs. Chimeric proteins containing the 3CL-pro could represent an innovative approach to developing new COVID-19 vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , COVID-19 Vaccines , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Humans , Peptide Hydrolases , SARS-CoV-2/genetics
11.
Vaccines (Basel) ; 10(2)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35214614

ABSTRACT

The liver fluke Fasciola hepatica is an economically important global pathogen of humans and their livestock. To facilitate host invasion and migration, F. hepatica secretes an abundance of cathepsin peptidases but prevents excessive damage to both parasite and host tissues by co-secreting regulatory peptidase inhibitors, cystatins/stefins and Kunitz-type inhibitors. Here, we report a vaccine strategy aimed at disrupting the parasite's protease/anti-protease balance by targeting these key inhibitors. Our vaccine cocktail containing three recombinant stefins (rFhStf-1, rFhStf-2, rFhStf-3) and a Kunitz-type inhibitor (rFhKT1) formulated in adjuvant Montanide 61VG was assessed in two independent sheep trials. While fluke burden was not reduced in either trial, in Trial 1 the vaccinated animals showed significantly greater weight gain (p < 0.05) relative to the non-vaccinated control group. In both trials we observed a significant reduction in egg viability (36-42%). Multivariate regression analyses showed vaccination and increased levels of IgG2 antibodies specific for the F. hepatica peptidase inhibitors were positive indicators for increased weight gain and levels of haemoglobin within the normal range at 16 weeks post-infection (wpi; p < 0.05). These studies point to the potential of targeting peptidase inhibitors as vaccine cocktails for fasciolosis control in sheep.

12.
PLoS Pathog ; 18(1): e1010226, 2022 01.
Article in English | MEDLINE | ID: mdl-35007288

ABSTRACT

The complement system is a first-line innate host immune defence against invading pathogens. It is activated via three pathways, termed Classical, Lectin and Alternative, which are mediated by antibodies, carbohydrate arrays or microbial liposaccharides, respectively. The three complement pathways converge in the formation of C3-convertase followed by the assembly of a lethal pore-like structure, the membrane attack complex (MAC), on the pathogen surface. We found that the infectious stage of the helminth parasite Fasciola hepatica, the newly excysted juvenile (NEJ), is resistant to the damaging effects of complement. Despite being coated with mannosylated proteins, the main initiator of the Lectin pathway, the mannose binding lectin (MBL), does not bind to the surface of live NEJ. In addition, we found that recombinantly expressed serine protease inhibitors secreted by NEJ (rFhSrp1 and rFhSrp2) selectively prevent activation of the complement via the Lectin pathway. Our experiments demonstrate that rFhSrp1 and rFhSrp2 inhibit native and recombinant MBL-associated serine proteases (MASPs), impairing the primary step that mediates C3b and C4b deposition on the NEJ surface. Indeed, immunofluorescence studies show that MBL, C3b, C4b or MAC are not deposited on the surface of NEJ incubated in normal human serum. Taken together, our findings uncover new means by which a helminth parasite prevents the activation of the Lectin complement pathway to become refractory to killing via this host response, in spite of presenting an assortment of glycans on their surface.


Subject(s)
Complement System Proteins/immunology , Fasciola hepatica/immunology , Helminth Proteins/immunology , Mannose-Binding Lectin/immunology , Mannose-Binding Protein-Associated Serine Proteases/immunology , Animals , Helminth Proteins/metabolism , Humans , Immunity, Innate/immunology , Mannose-Binding Lectin/metabolism , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Serpins/immunology , Serpins/metabolism
13.
Animals (Basel) ; 11(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34944270

ABSTRACT

Fasciolosis caused by Fasciola hepatica is a major global disease of livestock and an important neglected helminthiasis of humans. Infection arises when encysted metacercariae are ingested by the mammalian host. Within the intestine, the parasite excysts as a newly excysted juvenile (NEJ) that penetrates the intestinal wall and migrates to the liver. NEJ excystment and tissue penetration are facilitated by the secretion of cysteine peptidases, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these peptidases is growing, we have yet to understand why multiple enzymes are required for parasite invasion. Here, we produced functional recombinant forms of these four peptidases and compared their physio-biochemical characteristics. Our studies show great variation of their pH optima for activity, substrate specificity and inhibitory profile. Carboxy-dipeptidase activity was exhibited exclusively by FhCB1. Our studies suggest that, combined, these peptidases create a powerful hydrolytic cocktail capable of digesting the various host tissues, cells and macromolecules. Although we found several inhibitors of these enzymes, they did not show potent inhibition of metacercarial excystment or NEJ viability in vitro. However, this does not exclude these peptidases as targets for future drug or vaccine development.

14.
Pathogens ; 10(10)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34684264

ABSTRACT

Helminth infections in people contribute to the 1 [...].

15.
Virulence ; 12(1): 2839-2867, 2021 12.
Article in English | MEDLINE | ID: mdl-34696693

ABSTRACT

Fasciolosis caused by the liver flukes Fasciola hepatica and Fasciola gigantica is one of the most important neglected parasitic diseases of humans and animals. The ability of the parasites to infect and multiply in their intermediate snail hosts, and their adaptation to a wide variety of mammalian definitive hosts contribute to their high transmissibility and distribution. Within the mammalian host, the trauma caused by the immature flukes burrowing through the liver parenchyma is associated with most of the pathogenesis. Similarly, the feeding activity and the physical presence of large flukes in the bile ducts can lead to anemia, inflammation, obstruction and cholangitis. The high frequency of non-synonymous polymorphisms found in Fasciola spp. genes allows for adaptation and invasion of a broad range of hosts. This is also facilitated by parasite's excretory-secretory (ES) molecules that mediate physiological changes that allows their establishment within the host. ES contains cathepsin peptidases that aid parasite invasion by degrading collagen and fibronectin. In the bile ducts, cathepsin-L is critical to hemoglobin digestion during feeding activities. Other molecules (peroxiredoxin, cathepsin-L and Kunitz-type inhibitor) stimulate a strong immune response polarized toward a Treg/Th2 phenotype that favors fluke's survival. Helminth defense molecule, fatty acid binding proteins, Fasciola-specific glycans and miRNAs modulate host pro-inflammatory responses, while antioxidant scavenger enzymes work in an orchestrated way to deter host oxidant-mediated damage. Combining these strategies Fasciola spp. survive for decades within their mammalian host, where they reproduce and spread to become one of the most widespread zoonotic worm parasites in the world.


Subject(s)
Fasciola hepatica , Fasciola , Fascioliasis , Animals , Cathepsins , Fasciola/genetics , Fasciola hepatica/genetics , Fascioliasis/parasitology , Mammals , Virulence , Zoonoses
16.
Vet Parasitol ; 298: 109517, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34271318

ABSTRACT

Fasciolosis, a global parasitic disease of agricultural livestock, is caused by the liver fluke Fasciola hepatica. Management and strategic control of fasciolosis on farms depends on early assessment of the extent of disease so that control measures can be implemented quickly. Traditionally, this has relied on the detection of eggs in the faeces of animals, a laborious method that lacks sensitivity, especially for sub-clinical infections, and identifies chronic infections only. Enzyme linked immunosorbent assays (ELISA) offer a quicker and more sensitive serological means of diagnosis that could detect early acute infection before significant liver damage occurs. The performance of three functionally-active recombinant forms of the major F. hepatica secreted cathepsins L, rFhCL1, rFhCL2, rFhCL3, and a cathepsin B, rFhCB3, were evaluated as antigens in an indirect ELISA to serologically diagnose liver fluke infection in experimentally and naturally infected sheep. rFhCL1 and rFhCL3 were the most effective of the four antigens detecting fasciolosis in sheep as early as three weeks after experimental infection, at least five weeks earlier than both coproantigen and faecal egg tests. In addition, the rFhCL1 and rFhCL3 ELISAs had a very low detection limit for liver fluke in lambs exposed to natural infection on pastures and thus could play a major role in the surveillance of farms and a 'test and treat' approach to disease management. Finally, antibodies to all three cathepsin L proteases remain high throughout chronic infection but decline rapidly after drug treatment with the flukicide, triclabendazole, implying that the test may be adapted to trace the effectiveness of drug treatment.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Fasciola hepatica , Fascioliasis , Sheep Diseases , Animals , Cathepsin L/metabolism , Enzyme-Linked Immunosorbent Assay/veterinary , Fasciola hepatica/immunology , Fascioliasis/diagnosis , Fascioliasis/veterinary , Feces/parasitology , Ovum , Sheep , Sheep Diseases/diagnosis
17.
Pathogens ; 10(6)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207550

ABSTRACT

Excretory/secretory products released by helminth parasites have been widely studied for their diagnostic utility, immunomodulatory properties, as well as for their use as vaccines. Due to their location at the host/parasite interface, the characterization of parasite secretions is important to unravel the molecular interactions governing the relationships between helminth parasites and their hosts. In this study, the excretory/secretory products from adult worms of the trematode Fasciola hepatica (FhES) were employed in a combination of two-dimensional electrophoresis, immunoblot and mass spectrometry, to analyze the immune response elicited in sheep during the course of an experimental infection. Ten different immunogenic proteins from FhES recognized by serum samples from infected sheep at 4, 8, and/or 12 weeks post-infection were identified. Among these, different isoforms of cathepsin L and B, peroxiredoxin, calmodulin, or glutathione S-transferase were recognized from the beginning to the end of the experimental infection, suggesting their potential role as immunomodulatory antigens. Furthermore, four FhES proteins (C2H2-type domain-containing protein, ferritin, superoxide dismutase, and globin-3) were identified for the first time as non-immunogenic proteins. These results may help to further understand host/parasite relationships in fasciolosis, and to identify potential diagnostic molecules and drug target candidates of F. hepatica.

18.
Vet Res ; 52(1): 99, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34215335

ABSTRACT

The immunomodulatory capacity of F. hepatica antigens is probably one of the main reasons for the development of a driven non-protective Th2 immune response. In this study, we analysed the cellular response of hepatic lymph node cells and CD4+ T cells in terms of proliferative response, efficiency of antigen presentation and cytokine production, to F. hepatica-derived molecules, at early and late stages of the infection. Thirty-one sheep were allocated into five groups and were slaughtered at 16 dpi and 23 wpi. In order to analyse antigen-specific response, the following F. hepatica recombinant molecules were used: rFhCL1, rFhCL2, rFhCL3, rFhCB1, rFhCB2, rFhCB3, rFhStf-1, rFhStf-2, rFhStf-3 and rFhKT1. A cell proliferation assay using hepatic lymph node cells and an antigen presentation cell assay using CD4+ T cells were performed. At 16 dpi, all molecules but rFhStf-2 and rFhKT1 elicited a significant cell proliferative response on hepatic lymph node cells of infected animals. At both early and late stage of the infection, antigen presentation of rFhCB3 and rFhCL2 resulted in higher stimulation index of CD4+ T cells which was IL-2 mediated, although no statistically significant when compared to uninfected animals. Significant cytokine production (IL-4, IL-10 and IFN-γ) was conditioned by the antigen-specific cell stimulation. No CD4+ T cell exhaustion was detected in infected sheep at the chronic stage of the infection. This study addressed antigen-specific response to F. hepatica-derived molecules that are involved in key aspects of the parasite survival within the host.


Subject(s)
Antigens, Helminth/immunology , Fascioliasis/veterinary , Lymph Nodes/immunology , Sheep Diseases/immunology , T-Lymphocytes/immunology , Animals , Fasciola hepatica/physiology , Fascioliasis/immunology , Fascioliasis/parasitology , Liver/immunology , Male , Sheep , Sheep Diseases/parasitology , Sheep, Domestic
19.
Epidemiol Infect ; 149: e140, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34099081

ABSTRACT

The novel coronavirus, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), is the causative agent of the 2020 worldwide coronavirus pandemic. Antibody testing is useful for diagnosing historic infections of a disease in a population. These tests are also a helpful epidemiological tool for predicting how the virus spreads in a community, relating antibody levels to immunity and for assessing herd immunity. In the present study, SARS-CoV-2 viral proteins were recombinantly produced and used to analyse serum from individuals previously exposed, or not, to SARS-CoV-2. The nucleocapsid (Npro) and spike subunit 2 (S2Frag) proteins were identified as highly immunogenic, although responses to the former were generally greater. These two proteins were used to develop two quantitative enzyme-linked immunosorbent assays (ELISAs) that when used in combination resulted in a highly reliable diagnostic test. Npro and S2Frag-ELISAs could detect at least 10% more true positive coronavirus disease-2019 (COVID-19) cases than the commercially available ARCHITECT test (Abbott). Moreover, our quantitative ELISAs also show that specific antibodies to SARS-CoV-2 proteins tend to wane rapidly even in patients who had developed severe disease. As antibody tests complement COVID-19 diagnosis and determine population-level surveillance during this pandemic, the alternative diagnostic we present in this study could play a role in controlling the spread of the virus.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Viral/blood , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/isolation & purification , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Kinetics , Male , Middle Aged , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification
20.
Front Cell Infect Microbiol ; 11: 667272, 2021.
Article in English | MEDLINE | ID: mdl-34026663

ABSTRACT

Trematode parasites of the genus Fasciola are the cause of liver fluke disease (fasciolosis) in humans and their livestock. Infection of the host involves invasion through the intestinal wall followed by migration in the liver that results in extensive damage, before the parasite settles as a mature egg-laying adult in the bile ducts. Genomic and transcriptomic studies revealed that increased metabolic stress during the rapid growth and development of F. hepatica is balanced with the up-regulation of the thiol-independent antioxidant system. In this cascade system thioredoxin/glutathione reductase (TGR) reduces thioredoxin (Trx), which then reduces and activates peroxiredoxin (Prx), whose major function is to protect cells against the damaging hydrogen peroxide free radicals. F. hepatica expresses a single TGR, three Trx and three Prx genes; however, the transcriptional expression of Trx1 and Prx1 far out-weighs (>50-fold) other members of their family, and both are major components of the parasite secretome. While Prx1 possesses a leader signal peptide that directs its secretion through the classical pathway and explains why this enzyme is found freely soluble in the secretome, Trx1 lacks a leader peptide and is secreted via an alternative pathway that packages the majority of this enzyme into extracellular vesicles (EVs). Here we propose that F. hepatica Prx1 and Trx1 do not function as part of the parasite's stress-inducible thiol-dependant cascade, but play autonomous roles in defence against the general anti-pathogen oxidative burst by innate immune cells, in the modulation of host immune responses and regulation of inflammation.


Subject(s)
Fasciola hepatica , Fascioliasis , Animals , Antioxidants , Humans , Peroxiredoxins , Thioredoxins
SELECTION OF CITATIONS
SEARCH DETAIL
...